

Virtex-II Pro PowerPC SEE Characterization Test Methods and Results

Session L: Birds of a Feather

David Petrick¹, Wesley Powell¹, Ken LaBel¹, James Howard²

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771 ²Jackson & Tull, Seabrook, MD 20706

Petrick 1 MAPLD05/BOFL146

Introduction

- Prior Xilinx Virtex-II Pro SEE testing
 - Memec COTS board
 - Heavy ions at TAMU and MSU
 - Focus: PowerPC, MGTs, and SEL
- Current Xilinx Virtex-II Pro SEE testing
 - Xilinx Radiation Test Consortium board
 - Protons at IUCF
 - Focus: PowerPC(s)

Petrick 2 MAPLD05/BOFL146

XRTC Board – Daughter Card

- Xilinx Virtex-II Pro
 - XQR2VP40-FF1152
 - Dual PowerPCs
 - 15,868,256 configuration bits
- External interfaces
 - Platform flash devices
 - JTAG/SelectMAP
 - CPU debug headers
 - RS-232
 - 2 300-pin Teradyne connectors
 - SMPX MGTs
- Isolated power lugs
- Available with socket

Petrick 3 MAPLD05/BOFL146

XRTC Board - Motherboard

- 2 XC2VP70 FPGAs
 - DUT configuration scrubber
 - DUT functionality monitor
- External interfaces
 - Platform flash devices
 - System ACE
 - Triple majority voted flash
 - 7 40-pin IDE connectors
 - 3 512-MB SDRAM DIMMs
 - 3 RS-232 ports
 - JTAG/Debug headers
 - MGT clock synthesizer
 - SMPX MGTs

etrick 4 MAPLD05/BOFL146

IUCF Test Facility

- Indiana University Cyclotron Facility
 - Bloomington, IN
 - Proton beam
 - Energy: 30 200 MeV
 - Flux: 1e2 1e11 p/sec-cm²
 - Cable length distance to user area is 60-70 ft.

Petrick

Test Setup Radiation Chamber Laptop #1 GPIB COAX **GPIB GPIB** PCMCIA GPIB Extende Power Supply #2 (2.5,3.3, 5) Power Supply #3 (1.5,2.5,3.3) Power Supply #1 (3.3,5) LED/Switch Laptop #2 Box (ConfigMon) Daughtercard LED/Switch Box (FuncMon) Laptop #3 SEAKR Motherboard RS232 Petrick MAPLD05/BOFL146

Test Applications

- 1. Static Register/Cache Test
 - PowerPC initializes registers before each run
 - XMD used to initialize data cache before run, read out register and data cache after run via JTAG
- 2. "Pseudo-Static" Register Test
 - FuncMon issues IRQs to DUT PowerPC at 1-Hz
 - DUT PowerPC ISR dumps all 80 register values to FuncMon via 32-bit GPIO data bus
 - FuncMon buffers all data received, issues IRQ to its own PowerPC, which dumps data out UART
 - FuncMon also counts reset events and timeout events

Petrick 8 MAPLD05/BOFL146

Test Complications

- Functionality not integrated for this test
 - 1. Configuration scrubbing
 - 2. Design triplication
 - 3. DUT PowerPC exception handlers
- Connection failures with socketed DUT card
 - 1152-pin spring loaded socket
 - Damaged springs resulted in signal connections including JTAG
 - Static register/cache test was not possible with socketed card

Petrick 10 MAPLD05/BOFL146

SEE Results

Static Test Bit-Error Results

PowerPC Unit	Total Bit-Errors	Cross (cm ²)	StDev	Cross/bit (cm ²)	StDev
GPRs	4	4.99E-11	2.50E-11	4.88E-14	2.44E-14
D-Cache	87	4.34E-9	2.33E-10	3.31E-14	1.78E-15

Pseudo-Static Test SEE Results

(Note: Each run was stopped when the DUT stopped responding to IRQs)

Computation Method	Cross (cm ²)	StDev
Average of 24 runs	9.54E-10	7.51E-10

• Other observed effects:

 Processor resets, DUT power cycling required, instruction jumps, program exceptions, irregular response to IRQs, bit-flips in SPRs

Petrick 11 MAPLD05/BOFL146

Discussion of Results

• Static Test

- Valid SEU data collected on register and cache
- For statistical purposes, more testing is required
- Scrubbing will keep JTAG routing valid, decreasing the number of "bad" runs

Pseudo-Static Test

- The runs were not long enough to gather SEU data on the registers
- Four runs failed during a DUT PowerPC ISR, *however*:
- No scrubbing → all runs most likely failed due to configuration upsets rather than a PowerPC SEE
- Scrubbing and exception handlers will allow SEU data to be collected using this IRQ design scheme

Petrick 12 MAPLD05/BOFL146

Future Work Plan

- Integrate configuration scrubbing, exception handlers, and TMR into designs
- Add more functionality to test applications
 - Use of dual PowerPCs for data collection
 - Ability to monitor/count program exception types
- Advanced test applications
 - Exercise PowerPC with dynamic test
 - Preliminary PowerPC mitigation test
- Next test date: October 17-19 @ IUCF

Petrick 13 MAPLD05/BOFL146